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ABSTRACT

Testicular germ cell tumors (TGCT) are comprised of two histologic groups, seminomas 

and nonseminomas.  We postulated that the possible divergent pathogeneses of these 

histologies may be partially explained by variable endogenous DNA damage.  To assess 

our hypothesis, we conducted a case-case analysis of seminomas and nonseminomas

using the alkaline comet assay to quantify single-strand DNA breaks and alkali-labile 

sites. The Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort 

provided 112 TGCT cases (51 seminomas & 61 nonseminomas).  A lymphoblastoid cell 

line was cultured for each patient and the alkaline comet assay was used to determine 

four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail 

moment (OTM).  Odds ratios (OR) and 95% confidence intervals (95%CI) were 

estimated using logistic regression.  Values for tail length, tail DNA, CDM and 

OTM were modeled as categorical variables using the 50th and 75th percentiles of the 

seminoma group.  Tail DNA was significantly associated with nonseminoma compared to 

seminoma (OR50th percentile=3.31, 95%CI: 1.00, 10.98; OR75th percentile=3.71, 95%CI: 1.04, 

13.20; p for trend=0.039).  OTM exhibited similar, albeit statistically non-significant, risk 

estimates (OR50th percentile=2.27, 95%CI: 0.75, 6.87; OR75th percentile=2.40, 95%CI: 0.75, 

7.71; p for trend=0.12) whereas tail length and CDM showed no association.  In 

conclusion, the results for tail DNA and OTM indicate that endogenous DNA damage 

levels are higher in patients who develop nonseminoma compared with seminoma.  This

may partly explain the more aggressive biology and younger age-of-onset of this 

histologic subgroup compared with the relatively less aggressive, later-onset seminoma.



INTRODUCTION

The etiopathogenesis of testicular germ cell tumors (TGCT) and its distinct histologic 

subtypes, seminoma and nonseminoma, largely remains to be elucidated.  Epidemiologic 

investigations, meanwhile, are being undertaken in an increasing number, a development 

piqued by the unexplained rise in incidence of this cancer over the past 40 years in 

Western Europe and the United States (1-3).  Although some risk factors have been

consistently associated with risk of TGCT, specifically cryptorchidism, prior history of 

TGCT and family history of TGCT (4), much of the epidemiologic evidence remains 

weak and contradictory (5).  The current antithetical state of the TGCT literature may be 

partly attributable to the two main histologic groups having potentially divergent

etiologies and natural histories (6, 7).  

Accumulation of cellular DNA damage, the failure to repair such and the loss of the 

ability to undergo apoptosis are hallmarks of all cancers.  Endogenous DNA damage, that 

present in the absence of exogenous mutagen challenges, is rate-limited by carcinogen-

activation, carcinogen-detoxification and DNA repair efficiency (8, 9).  Single-strand 

DNA breaks and alkali-labile sites, products of DNA metabolism processes including 

repair whose goal is to prevent genomic instability, can be quantified using the alkaline 

comet assay (10).  The alkaline comet assay has suggested that higher levels of 

endogenous DNA damage are associated with diverse cancers, including those of the 

lung (11, 12), esophagus (13), breast (14-16), bladder (17) and ovary (18).  



Although testicular seminoma and nonseminoma are thought to arise from a common 

precursor (19), it is postulated that they have divergent pathogeneses, which may be 

explained, partially, by variable levels of endogenous DNA damage.  To assess our 

hypothesis, a case-case analysis of the two histologic subgroups of TGCT, seminoma and 

nonseminoma, was undertaken, using the alkaline comet assay to quantify endogenous 

DNA damage.

MATERIALS & METHODS

Study Design

Testicular germ cell tumor cases for this analysis were identified from two existing 

studies at the National Cancer Institute:  the Familial Testicular Cancer (FTC) study and 

the U.S. Radiologic Technologists (USRT) study.  The focus of the family-based FTC 

study is the identification of TGCT susceptibility genes (20). Families are eligible for 

enrollment if they have at least two confirmed cases of testicular cancer, or if they have a 

single bilateral case.  For the current study, the FTC study provided samples from 72 

family history positive unilateral TGCT cases, 6 family history positive bilateral cases 

and 18 family history negative bilateral cases.  The USRT study is a cohort study of 

143,517 radiologic technologists who were occupationally certified between 1926 and 

1980 (21).  Incident cancers in the cohort, including sixteen TGCTs, were ascertained 

through 2005.  All cases of TGCT were unilateral and all provided samples to the current 

study.  The FTC and USRT studies were approved the Institutional Review Board of the 

National Cancer Institute.  Laboratory work conducted at Lawrence Livermore National 



Laboratory (LLNL) has been approved annually by the LLNL Institutional Review 

Board.

Comet Analysis

An Epstein Barr virus transformed lymphoblastoid cell line was prepared from peripheral 

blood lymphocytes obtained from each subject.  DNA samples were identified by a 

unique ID code, and investigators were blinded to case-group status.  The methods used 

have been described in detail (Sigurdson et al., 2005).  Briefly, cell lines were cultured in 

RPMI 1640 supplemented with 15% serum (Fetal Clone III, HyClone, Logan, Utah) and 

2mM glutamine for 1 to 2 weeks prior to analysis.  Viability was determined by Trypan 

blue dye exclusion.  The alkaline comet assay was used to measure DNA damage in 

exponentially growing cells according to Singh et al. (10) with slight modifications.  

Images of 50 cells on each of two slides were captured and comet parameters determined 

using Komet4.0©: Image Analysis and Data Capture software (Kinetic Imaging, Ltd., 

Merseyside, England).  The image analysis software generates many comet parameters 

but only four were retained and analyzed: tail DNA, tail length, comet distributed 

moment (CDM) and Olive tail moment (OTM).  These are the four most common comet 

parameters reported in the literature, two of which (tail DNA and OTM) have recently 

been endorsed as the most quantitative and robust for epidemiologic studies (22).  “Tail 

DNA” is the percent of DNA (fluorescence) in the tail.  “Tail length” is the length of the 

tail in µm. CDM is the moment of fluorescence of the whole comet and does not 

distinguish between head and tail.  OTM, or tail moment, is the product of the percentage 

of DNA in the tail (tail DNA) and the distance between the means of the head and tail 



fluorescence distributions.  Both CDM and OTM are expressed in arbitrary units.  All 

four parameters describe the amount of endogenous DNA damage; thus high values are 

thought to correspond to an increased cellular DNA strand breakage and/or alkali-labile 

sites.

Statistical analysis

The geometric mean of tail length, tail DNA, CDM and OTM of 100 randomly 

selected cells per subject was used as a summary measure to reduce the influence of 

outliers.  Normality of the subject-specific summary measures was assessed for each 

comet parameter by Kolmogorov–Smirnov tests and visual inspection of quantile–

quantile plots that were generated. Comet values did not deviate from normality.  

Analysis of variance (ANOVA) was used to compare means of comet values stratified by 

various factors, including date of cell culture, date of cell harvest, date of electrophoresis, 

date of image analysis, cell viability in culture, study from which sample originated, age 

of blood draw, age of TGCT diagnosis, history of cryptorchidism and TGCT laterality.  

Dates of cell culture, cell harvest, electrophoresis and image analysis were all highly 

correlated.  If these variables were deemed to be confounding then the variable which 

produced the highest r2 was retained in the fully adjusted model.  The association 

between comet values and histologic group was evaluated by calculating odds ratios (OR) 

and 95% confidence intervals using logistic regression. The cluster option was used to 

estimate the standard errors and variance-covariance matrix, in order to account for any 

intra-group correlation caused by a subset of the familial cases being related (i.e., more 

than one affected member of a multiple case family was permitted into the data set).  



Among the 24 bilateral TGCT cases, 8 men had discordant histology between the two 

affected testes.  For analytic purposes, these individuals were coded as having 

nonseminoma based on the assumption that if endogenous DNA levels were different 

between the two histologic groups, they would more likely be higher in nonseminomas as 

they are more clinically aggressive (23-25) and arise at earlier ages (23, 26) than 

seminomas.  Comet values for tail length, tail DNA, CDM and OTM were modeled as 

categorical variables using the 50th and 75th percentiles of the seminoma group as 

cutpoints.  All models were adjusted for the potential confounders listed above and 

were evaluated by comparing comet value ORs with and without each factor in the 

model.  If a covariate altered the risk estimate by >10% it was considered a confounder 

and retained within the model.  When applicable, tests for linear trend in risk according to 

the medians of each category of a given ordered categorical variable were conducted to 

evaluate possible dose-response relationships.  Statistical analyses were conducted with 

STATA 10 software (27).  All tests were two sided, with p<0.05 defined as 

statistically significant.  Coefficients of variation for the alkaline comet assay, as 

conducted at the LLNL using repeat samples, have been less than 15% (28).

RESULTS

This case-case analysis included 112 TGCT patients (51 seminomas and 61 

nonseminomas).  Of the 112, there were 52 individual cases, 27 related case-pairs and 2 

related case-triads.  The overall mean age at TGCT diagnosis for all study participants 

was 31.2 years; the mean age at diagnosis for seminoma (34.1 years) was later than 

nonseminoma (28.7 years). Mean age of blood draw was 42.5 years, which was an 



average of 10 years post-diagnosis.  Six of the 51 seminoma patients (11.8%) and four of 

the 61 nonseminoma patients (6.8%) had a history of cryptorchidism.  

The results of the logistic regression analyses are shown in the Table.  Variables that 

affected a comet parameter’s risk estimate were included in the model.  These variables 

were date of cell harvest for tail DNA and for OTM and date of cell electrophoresis for

CDM.  Other variables tested as potential confounders, such as age at blood draw, age at

TGCT diagnosis and history of cryptorchidism, did not alter the risk estimates and thus 

were not retained in the final models.  Tail DNA was observed to be significantly 

associated with nonseminoma versus seminoma (OR50th percentile=3.31, 95%CI: 1.00, 

10.98; OR75th percentile=3.71, 95%CI: 1.04, 13.20).  The trend across the tail DNA estimates 

was positively correlated with nonseminoma  (p=0.027).  Although the results for OTM 

did not reach statistical significance, the estimates and trend were similar to that observed 

for tail DNA (OR50th percentile=2.27, 95%CI: 0.75, 6.87; OR75th percentile=2.40, 95%CI: 0.75, 

7.71; p for trend=0.12).  Tail length and CDM were not associated with TGCT histology.  

These results did not differ when the 16 USRT or the eight bilateral 

seminoma/nonseminoma cases were excluded from the analysis.  The Figure shows 

boxplots of tail DNA and OTM stratified by histology.  

DISCUSSION

To our knowledge this is the first study to quantify endogenous DNA damage in TGCT 

patients.  The results for tail DNA and OTM indicate that endogenous levels of single 

strand DNA breaks and alkali-labile sites are higher in men who develop nonseminoma 

compared with seminoma.  This result may partly explain the more biologically 



aggressive nature (23-25) and younger age at diagnosis (23, 26) of nonseminoma

compared with the relatively less aggressive seminoma.  This postulate is consistent with 

the evidence that nonseminoma may derive from seminoma via transitional genetic re-

programming (19, 29, 30), a process that would theoretically be aided by increased 

genetic instability.  

Quantitation of DNA damage in cultured lymphoblastoid cell lines, created using blood 

drawn on average 10 years post-diagnosis, is likely to represent an individual's capacity 

to limit DNA damage and its associated health consequences.  Therefore, the increased 

levels of endogenous DNA damage observed in patients who developed nonseminoma, 

relative to those who developed seminoma, represent either a difference in the net rate of 

carcinogen metabolism and/or a difference in the ability to repair DNA.  

The relationship between carcinogen metabolism and cancer risk is poorly understood, 

primarily due to the complexity of such metabolic interactions (31).  Most studies have 

focused on either phase I (e.g. cytochrome P450s (CYP)) or phase II (e.g. N-

acetyltransferase, glutathione S-transferase) gene variants, while studies analyzing TGCT 

risk have been few.  One study has reported positive associations of CYP3A4 -392G and 

CYP3A5 6986G and an inverse association of CYP1A2 -163A with TGCT risk (32).  A 

second study observed low CYP1A2 activity to be associated with TGCT risk (33).  Both 

of these studies found risk was unaltered when stratified by histologic group.  



Although the mitotically dividing cells of the testes may have a limited DNA damage 

response (34), variation in DNA repair capacity could also explain the observed 

difference in levels of endogenous DNA damage between TGCT histologies.  Presently, 

only two studies have investigated DNA repair gene variants in relation to TGCT risk.  

The first study found no association of single nucleotide polymorphisms of XPD, 

ERCC1, XRCC3 and OGG1 with risk of TGCT or either histologic type (35).  However, 

this study only had 47% power to detect an OR of 2, an estimate which may be 

considered optimistic, especially given that a subsequently published genome-wide 

linkage study found no single major locus could account for familial aggregation of 

TGCT (36).  The second study evaluated two polymorphisms of the XRCC1 gene and 

found that having at least one Arg399Gln polymorphism increased TGCT risk (37).  This 

association was stronger when restricted to patients with pure seminoma or metastatic 

disease.  

The current literature regarding carcinogen metabolism and DNA repair in relation to 

TGCT risk, and its histologies, is still in its infancy, as is our understanding of the totality 

of these biologic processes with regard to cancer risk.  As such, we cannot currently offer 

a specific explanation for the novel findings of differential levels of endogenous DNA 

damage by histology reported here.

It has been perceived that seminoma and nonseminoma have a similar etiopathogenesis 

and the epidemiological evidence is certainly consistent with this notion, insofar that they 

arise through a common precursor lesion (CIS) (19), have overlapping risk factors (38-



45) and, in many countries, share similar incidence trends over time (46).  However, only 

a handful of studies investigating histologic differences have had a large number of cases 

(n>500) and many of the smaller studies may have lacked statistical power, increasing the 

chance of type two errors.  Moreover, there is mounting epidemiologic evidence to 

suggest that a divergence occurs in the natural history of these histologies.  Notable 

evidence includes cryptorchidism (6, 45, 47, 48), low birth weight (49, 50) and low birth 

order (43, 51) being predominantly associated with an increased risk of seminoma, while 

participation in specific sporting activities (6) and long gestational duration (52) appear 

more protective against seminoma relative to nonseminoma.  In addition, risk factors 

primarily associated with an increased risk of nonseminoma include testicular trauma (6, 

48), history of at least one sexually transmitted disease (6), younger age at shaving 

initiation (53) and short gestational duration (52), while later age of puberty may have a 

stronger protective effect against nonseminoma than seminoma (6, 40, 54).  Although the 

literature is not congruent for any one of these histologic dissimilarities, the evidence is 

suggestive of a digression in the natural history and risk profile of these cancers, a 

hypothesis which is also indicated by divergent incidence rates for seminoma and 

nonseminoma in countries such as Italy (46) and the U.S. (55), and by the variable levels 

of endogenous DNA damage reported here.   

Strengths of this analysis include: its case-case design, which mitigates the problem of 

reverse causality bias when using a cancer-free control group; the use of lymphoblastoid 

cell lines, damage levels of which are expected to reflect the net effect of endogenous 

processes of metabolism and DNA repair and are unlikely to reflect occupational, diet or 



other lifestyle variables; and its large size, relative to many other comet assay analyses.  

The main limitation, meanwhile, is the inherent selection bias of the retrospective study 

design caused by death of potential participants, although the cure rate of TGCT cases is 

exceedingly high as evidenced by a five-year survival rate of >97% (56), a fact which 

may assuage such concerns.

In summary, this study has found evidence for higher levels of endogenous DNA damage 

in patients who developed nonseminoma relative to seminoma.  Replication of this 

finding should promote future studies to focus on the mechanism(s) underlying these 

differences.  
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TABLE. An analysis of comet parameters in cell lines from men diagnosed with 

nonseminoma compared to seminoma (referent group)

Seminoma (n) Nonseminoma 
(n)

Odds 
ratio p value

Tail DNA† (%)
4.2 - 7.7 25 21 1.00
7.8 - 9.4 13 19 3.31 1.00 - 10.98 0.050
9.5 - 13.7 13 21 3.71 1.04 - 13.20 0.043
p for trend 0.039

Tail length (µm)
12.1 - 32.1 25 29 1.00
32.2 - 34.8 13 10 0.66 0.23 - 1.91 0.45
34.9 - 45.8 13 22 1.46 0.58 - 3.68 0.42
p for trend 0.64

Comet distributed moment‡

14.6 - 20.1 25 30 1.00
20.2 - 21.7 13 16 0.95 0.40 - 2.27 0.91
21.8 - 27.7 13 15 0.85 0.30 - 2.38 0.75
p for trend 0.75

Olive tail moment†

1.0 - 1.8 25 23 1.00
1.9 - 2.2 13 18 2.27 0.75 - 6.87 0.15
2.3 - 3.6 13 20 2.40 0.75 - 7.71 0.14
p for trend 0.12

Comet parameter
Nonseminoma vs. Seminoma

95% CI

Referent

Referent

Referent

Referent

Comet parameters were divided into three categories using the 50th and 75th percentile 
of the seminoma distribution.
†adjusted for date of cell harvest
‡adjusted for date of electrophoresis



Figure legend
tail DNA; (b) Olive tail moment.  Each boxplot represents the geometric means of the 
respective comet parameter of 100 cells for each individual within the nonseminoma 
or seminoma group. The boxplots display the median (thick line), interquartile range 
(lower and upper box borders), the 5th and 95th percentiles (error bars), and extreme 
individual values (●).

FIGURE. Boxplots of comet parameters by testicular germ cell tumor histology.
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